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Abstract: Interventional therapy is one of the most effective methods for diagnosing and treating
vascular-related diseases at present. It relies on achieving precise and safe navigation of intravascular
tools within a patient’s vasculature. Vascular Interventional Surgical Robots (VISR) can reduce
surgeons’ exposure to operational hazards including radiation. However, the absence of apt position
control and force feedback remains a challenge. This study presents an isomorphic master–slave
VISR for precise navigation of endovascular tools viz. catheters and guidewires. The master console
aids operators in issuing manipulation commands and logs feedback from the force, rotation, and
translation data. The slave manipulator uses the commands received from the master platform
for actual tool navigation. However, precise master–slave position control and force feedback are
precursors for optimal patient outcomes. This study utilized a fuzzy-PID controller for precise
tool navigation and a neural network model for resistance force modulation with 50 mN precision.
Furthermore, we evaluated the performance of using the learning-based models within our VISR
and compared it with the performances from conventional methods. Results show that the models
enhanced the proposed robotic system with better navigation precision, faster response speed, and
improved force measurement capabilities.

Keywords: vascular interventional surgical robot; force feedback; endovascular catheterization;
learning-based models

1. Introduction

Cardiovascular diseases are characterized by high morbidity and mortality globally.
It is one of the primary contributors to global disease burden and disease-adjusted life
years [1]. Minimally invasive vascular intervention is recently gaining attention as it
offers health benefits for patients e.g. minor surgical trauma, less blood loss, and quicker
recovery. Thus, percutaneous coronary interventions (PCIs) are now a preferred modality
for effective diagnosing and treating different heart and cardiovascular diseases [2]. The
procedure involves catheterization of endovascular tools along the blood vessel. Such tools
are flexible thin tubes and inserted via peripheral ports into the cardiac regions. Despite
their advantages, endovascular interventions are manually performed under fluoroscopic
guidance, exposing surgeons to X-rays. A countermeasure is wearing a lead protection
apron, which leads interventionalists who frequently appear in the operating room to
sustain orthopedic injuries. Thus, robotic catheter systems, first introduced in 2004, now
offer significant advantages to interventionalists (e.g. reduced exposure to radiation and
orthopedic injury) when performing endovascular interventions.
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Recently, researchers have designed remote navigation systems to carry out angiogra-
phy and angioplasty procedures requiring navigation of the different endovascular tools
such as the catheter, guidewire, balloon, and stent. Some commercial telerobotic catheter
navigation systems are presented, such as CorPath 200® and CorPath GRX® (Siemens
Healthineers, MA, USA), Sensei® X robotic system(Hansen Medical Inc., Mountain View,
CA, USA), Niobe®(Stereotaxis Inc., MO, USA), and Amigo®(Catheter Precision, NJ, USA)
and they have been gradually adopted by some hospitals. These robotic systems usually
possess features of master–slave control mechanisms, closed-loop navigation, and proce-
dural visualization; these criteria are considered for selecting the global leading vascular
interventional surgical robot (VISR), while these VISRs have shown to relieve interventional-
ists’ burden from radiation exposure and orthopedic spine injuries, the existing commercial
products and underway prototypes succeeded with further merits of navigation precision,
guided control, and remote interventions [3]. Thus, further criteria used for accessing VISRs
recently are capabilities for multimodal data feedback, intelligent navigation, and task-
based automation during endovascular interventions. However, despite the accumulating
evidence that supports the clinical safety and technical efficiency of these systems [4,5],
robot-assisted vascular interventions are still limited to a very few clinical centers in the
world [6]. This is partly due to the lack of acquisition and feedback of tool-vessel force
information during robot-assisted intravascular interventions.

In the teleoperated endovascular procedures, interventionalists need to know how the
guidewire touches or interacts with the blood vessel to evaluate the safety of the procedure.
Conventionally, this is achieved during PCIs at the distal half of guidewires (i.e., about
30–35 cm from the tip of the flexible tool), which is coated with lubricious materials to
reduce tool–vessel friction and enhance slippery tool navigation when guidewires cross
coronary artery blockage. Interventionalists are trained with the expertise of stimuli in-
terplay to observe the tactile tool–vessel force interaction, especially when the tool’s tip
touches the vessel wall. However, this functionality is lacking in existing robotic platforms
used for robot-assisted PCIs (R-PCIs). The lack of such effective tactile feedback in the
interventional robots has raised medical, ethical, and legal concerns about intravascular
damage to the patient’s vasculature during R-PCIs [7]. As a result, several research groups
gradually identified sensing and feedback of distal contact force information during R-PCIs
to be an important evolving research [5,8,9]. Currently, interventionalists still depend on
visual image-based feedback using Digital Subtraction Angiography. Although this tech-
nique is employed to estimate the interaction forces between flexible tools (e.g., guidewires
and catheter) and the blood vessels. However, this is mostly imprecise and reduces inter-
ventionalists’ eye-hand coordination during R-PCIs [10,11].

Tool–vessel contact forces have been studied from the perspectives of proximal and
distal force perception and can be found in [12,13]. Proximal force data are obtained
with one or more commercial sensors placed around a clamping device within the robotic
system used to maintain endovascular tools in a fixed position. Usually, the resistance
information obtained is a complex composite force consisting of contact force and tool
hysteresis (e.g., backlash, frictional force, and viscous resistance from blood) and directly
interpreted to indicate the interventionalists’ tactile feedback during an operation. On the
other hand, the distal force perception requires integration of miniaturized sensors to
acquire the interaction force between the flexible tools and patient’s blood vessel wall
during intravascular catheterization; while this is the most effective approach and has
received more research attention, its developments are still preliminary.

Several methods have been proposed for both distal and proximal force sensing dur-
ing robot-assisted vascular catheterization with guidewires or catheters in recent years.
Broadly, these are classified as sensor-based [12–18] or model-based approaches [19–22].
Sensor-based methods typically engage the use of commercial (e.g., ATI F/T or Hall sen-
sors [23]) or custom sensors developed with strain gauge and Fiber Bragg Grating (FBG)
sensors [5,7,24,25] with special mechanical structures designed for catheters only. Alterna-
tively, model-based approaches involve analyzing the interventional catheterization process
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to estimate the force interactions between the flexible endovascular tools (i.e., catheters or
guidewires) and blood vessels.

This research aims to provide a novel VISR with machine learning-based approaches
for precise position-based navigation control and tool–vessel force measurement. In this
study, we propose to use fuzzy-PID for precise master–slave position control and a neural
network model for resistance force modulation to achieve 50 mN precision. The remainder
of the paper is structured as follows. In Section 2, the design of our sensorized VISR with
isomorphic master–slave devices is proposed. In Section 3, analysis of the robot’s dynamics
model is presented and linked for learning-based navigation control. The latter includes
the development and performance evaluation of a fuzzy-PID method. The results obtained
are compared with the performance of the conventional PID. Then, Section 4 introduces a
learning-based method for real-time force interaction estimation when catheterization is
performed with guidewires. Lastly, the study conclusions are given in Section 5.

2. Design and Manufacture of the Vascular Robotic System
2.1. Overview

This study proposes a VISR that can simulate a surgeon’s realistic operation mode. It
includes isomorphic master and slave devices with teleoperated control logic, as shown in
Figure 1. Both the master and slave mechanisms are capable of three degrees of freedom
(3-DoF) navigation. Thus, the robotic catheter system can be employed for tool delivery
with axial translation, rotary motion, and interventional angles of endovascular tools.
The robotic system is designed so that the surgeons can teleoperate the master console
in the room without being exposed to X-rays. For this, the slave devices can be fixed on
a robotic arm to ensure catheterization stability. This mechanism can be placed beside
a patient’s bed while it is manipulated to drive the endovascular tools along a patient’s
vasculature. The operating mechanism of the robotic system adopts a two-finger operation
mode. This involves simulating the wire feeding or rotation of the isomorphic master–slave
robotic catheter system. The robot is capable of transmitting motion commands issued
at the master-side device onto the slave-side with similar mechanism propulsion. Thus,
this ensures a reduced time is required for interventionalists to develop sufficient tool
manipulation techniques and skills for the surgical system.

Interventionalists control the robot’s slider in the master console to generate axial or
radial tool motions. The slave manipulator performs corresponding actions and controls
guidewires or catheter motion based on issued commands from the master platform. Fur-
thermore, a force feedback system is designed to improve interventionalists’ perceptual
senses for better motor control. The control architecture proposed for the VISR is pre-
sented in Figure 2. It demonstrates that the VISR uses multiple layers for intravascular
catheterization. The current version is designed for a shared-control paradigm in which
the interventionalists and the robotic system collaboratively manipulate the guidewire and
catheter. The system includes a network communication based on the transmission control
protocol (TCP), and a buffer of 1024 bits on each side of the TCP connection temporarily
holds the incoming data. With multithreading coding, the VISR could realize the different
commands and the hand motions utilized for robot-assisted catheterization independently.
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Figure 1. Control flow of the VISR. Surgeons teleoperate the doctor’s terminal in the room without
X-rays, and the slave manipulator with a robotic arm is placed beside the patient’s bed.
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Figure 2. Layers of the VISR control architecture.

2.2. Master Console

The master console, otherwise known as the surgeon terminal, comprises Nvidia®

Jetson AGX OrinTM Developer Kit, magnetic displacement sensor, rotary encoder, magnetic
powder brake, synchronous belt, lithium batteries as power supply, and a force box,
as shown in Figure 3. The magnetic displacement sensor provides axial information when
the surgeon pushes and pulls the sensor and sends them to Nvidia OrinTM through the
I2C communication protocol. The rotary encoder detects rotary motion and sends it to the
controller through the Modbus RTU protocol. The resolution of the magnetic displacement
sensor is 0.05 mm, and the rotary encoder is set to 0.072◦. The Nvidia® embedded controller
receives the data of the displacement and rotation information via a RS485/USB converter.
After the data is processed, the data is sent to the slave robot through the TCP/IP protocol
suite. As shown in Figure 4, the robotic system includes a force box used for measuring the
tactile force that interventionalists exerted with their fingers. This force is regarded as the
interventionalists’ operative force on the guidewire or catheter in regular surgery. The force
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box includes a 32-prism, 32 tiny flexible strip sensors, PCBs, and batteries. A flexible
sensor is folded and wound around the force box surface, and its data is logged as a
32-channel data multiplexed over an Analog Multiplexer (Texas Instruments, Dallas, Texas,
USA). Thus, the interventionalists also operate the master device by manipulating the
flexible sensor with their finger. The force data is processed in a microcontroller STM32
(STMicroelectronics, Geneva, Switzerland) and transmitted over a HC-04 Bluetooth module
(HC Tech, Guangzhou, China) to the slave console in real time. The force box also reflects
information about the flexible tool’s firmness as it is held with a clamping mechanism in
the slave manipulator. The guidewire is clamped tightly when the surgeon presses hard on
the force box and vice versa.

The controller on the master console transforms the guidewire force information ob-
tained from the slave manipulator into the current to determine the usage of the magnetic
powder brake. The brake is used to decide when the tool is safe to be navigated by the in-
terventionalists. The corresponding torque can be generated according to the input current
of the magnetic powder brake. With the help of the synchronous belt, the force resistance
can bring intuitive force feedback information to the surgeon. This procedure allows the
surgeon to establish a close surgical presence to the manual guidewire operation [26].

Rotation

Battery
Nvidia Jetson Orin

Rotary Encoder

Magnetic brake

Force Box

Figure 3. Model of the surgeons’ manipulator for vascular intervention.

(a) components of the force box. (b) the force box.

Figure 4. The structure of the force box, which can measure the tactile force exerted by the sur-
geon’s fingers. The force value will be used as parts of multi-modal information to optimize the
control algorithm.

2.3. Slave Manipulator

The slave manipulator is placed beside the patient’s bed in the operating room and
remotely controlled by the master console. Based on analysis of the unactuated flexible
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endovascular tools, the mechanism is designed to actualize the convention of manually
steering the guidewire and catheter in the CathLabs. The slave manipulator shown in
Figures 5 and 6 comprises a Nvidia® Jetson AGX OrinTM Developer Kit, an electric slider,
rotary motor, motor drivers (Orientalmotor®, Tokyo, Japan), gear sets, clamping device,
electric gripper, tool orientation adjuster, battery, digital transmitter, and force sensors.
A general-purpose input/output (GPIO) current from the Nvidia Orin, limited to 2 mA,
is used. Thus, a microcontroller STM32 is connected through the serial port to control the
tool orientation adjuster. Typically, the slave robot can meet the requirements of the hand
motions utilized for intravascular interventions. The robotic system can actualize actions
such as push, pull, clockwise, or anticlockwise rotation of the guidewire and catheter along
the blood vessel.

The slave controller receives instructions from the master device to control the slave’s
electric slide and the rotary motor independently. The clamping device is mounted on the
slide to realize the translation of the guidewire. An S-shape force sensor is mounted at
the rear of the clamping device. An artificial neural network is developed and applied to
estimate the proximal contact force of a catheter in the vessel, and it is presented in Section 4.
We also installed a tool orientation adjuster, which is now used to realize subdegree rotation
of the endovascular tools for accurate navigation of the flexible tools along curvy geometry
during an intervention. For the mobility of the VISR, a rechargeable battery pack unit is
designed for self-powering. The battery pack has a total capacity of 15,000 mAh, so it can
keep the robotic system up and running for an average of 3 h.

Figure 5. Structure of the patients’ terminal for vascular intervention.

The clamping device comprises a stepping screw motor, a guiding block, a clamp-
ing bracket block, a spring guide shaft, a linear slide rail, and a thin film force sensor.
The clamping device achieves the clamping and releasing of the guidewire and catheter
in the slave manipulator. When the lead screw of the stepping screw motor is pushed or
retracted, the guiding block will respond accordingly with the same navigation action.
A thin film force sensor is attached to the clamping device to measure the clamping force
on the guidewire. Therefore, the clamping force can be adjusted according to the operation
requirements in real-time to ensure that the flexible endovascular tools (viz., catheter and
guidewire) are effectively clamped, while the sensor also measures the tool handling force
data proximally.
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Figure 6. Slave manipulator of the VISR.

3. Control System of VISR
3.1. Dynamics Modeling

The dynamic model of its axial displacement is shown in Figure 7. The motor’s input
shaft is directly connected with the ball screw, and the ball screw is closely matched with
the linear slide rail with nuts; bolts tighten the moving base plate. It is fixed on the linear
slide rail, and the clamping device is loaded on the moving base plate. When the motor
rotates clockwise or anticlockwise, the rotation will be converted into a linear motion of the
moving base plate.

Figure 7. Dynamic model of the propulsion mechanism.

According to similar analysis on the electric slider [27], the overall dynamic equation
can be written as:

Tslide = Jslide ·
∂2θslide

∂t2 + Bslide ·
∂θslide

∂t
+ Tleadscrew (1)

The exact relationship between the driving torque of the stepping motor and the axial
displacement of the base plate can be expressed as:

Tslide =
2π

p
(Jslide + Jleadsrew +

p2ms

4π2η1
) · ∂2xs

∂t2 +

2π

p
(Bslide +

µv p2

4π2η1
) · ∂xs

∂t
+

pµcmsg
2πη1

(2)
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In the formula, Tslide is the driving torque of the propulsion motor (N·m); Jslide and
Jleadscrew are inertias of the propulsion stepper motor and lead screw (kg·m2), respectively;
Bslide is the damping coefficient of the slide; p is the length of the lead screw (mm); ms is
the mass of the moving table (kg); η1 is the positive efficiency of the lead screw; xs is the
axial displacement of the moving table (mm); µv is the viscous friction coefficient and µc is
the Coulomb friction coefficient.

The transfer function of the propulsion can be calculated with the Laplace transform as:

G(s) =
0.96

0.96s2 + 0.05s + 2.5
(3)

3.2. Fuzzy PID Controller of VISR

Proportional Integral Derivative (PID) is one of the most sophisticated and frequently
used control algorithms in the industry and in other applications requiring continuously
modulated control. A typical discrete-time PID controller can be expressed as follows:

u(t) = kpe(t) + ki

∫ t

0
e(t)dt + kd

de(t)
dt

(4)

Because of the dynamical effects in the proposed VISR, such as undesirable drifts,
friction, and backlash of motors [28], it is essential to adjust the parameters of the PID
controller dynamically. Fuzzy PID is a control algorithm that combines fuzzy logic for
self-tuning of the control gains in a PID-based control system. The fuzzy controller is
designed to automatically fix the gain values for a conventional PID and tune the control
parameters online according to the instantaneous error value of the system. This process
improves the accuracy of position tracking. The fuzzy logic operates on a set of rules built
on two system variables: tracking error and change in error, serving as inputs to the fuzzy
controller, and three control gains: kp, ki, and kd, which are its output.

The structure of the fuzzy PID controller is shown in Figure 8, where three parameters—
proportional gain kp, integral gain ki, and derivative gain kd—and a fuzzy logic system
(FLS) are used to tune the control gains [29]. The input of the FLS included the deviation
(e) and deviation change rate (ec = de/dt), while its output is the PID parameters kp, ki,
and kd. Each of the system inputs and output consists of three membership functions for
position error (e), the error rate (ec), and corresponding output variables u(t) of the fuzzy
controller [30,31]. These are converted into seven linguistic variables: Negative Big (NB),
Negative Medium (NM), Negative Small (NS), Zero (ZE), Positive Small (PS), Positive
Medium (PM), and Positive Big (PB). Inputs and outputs are all normalized in the interval
of [−1, 1]. It takes 49 rules to complete the fuzzy rule base for each gain, as shown in
Tables 1–3.

Table 1. Fuzzy Control Rule table of kp.

ec

NB NM NS ZE PS PM PB

e

NB PB PB PM PM PS ZE ZE

NM PB PB PM PM PS ZE NS

NS PM PM PM PS ZE NS NS

ZE PM PM PS ZE NS NM NM

PS PS PS ZE NS NS NM NM

PM PS ZE NS NM NM NM NB

PB ZE ZE NM NM NM NB NB
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Table 2. Fuzzy Control Rule table of ki.

ec

NB NM NS ZE PS PM PB

e

NB NB NB NM NM NS ZE ZE

NM NB NB NM NS NS ZE ZE

NS NB NM NS NS ZE PS PS

ZE NM NM NS ZE PS PM PM

PS NM NS ZE PS PS PM PB

PM ZE ZE PS PS PM PB PB

PB ZE ZE PS PM PS PB PB

Table 3. Fuzzy Control Rule table of kd.

ec

NB NM NS ZE PS PM PB

e

NB PS NS NB NB NM NM PS

NM PS NS NB NM NS NS ZE

NS ZE NS NM NM NS NS ZE

ZE ZE NS NS NS NS NS ZE

PS ZE ZE ZE ZE ZE ZE NS

PM PB PS PM PS PS PS PB

PB PB PM PM PM PS PS PB

PID 

Controller

Controlled 

Device

Fuzzification

kp ki kd

de/dt

Fuzzy Rule 

Base

Interface 

mechanism
Defuzzification

-

+ OutputSet-point

Fuzzy Logic

Figure 8. Structure of fuzzy logic based PID controller.

Based on Equation (3), a conventional and fuzzy PID controller is established in
MATLAB SIMULINK®. It provides tools for automatically choosing optimal PID gains to
balance performance (response time, bandwidth) and robustness (stability margins). Using
the PID Tuner tools based on the transfer function, we set the maximum error and response
time as main tuning goals, which are essential parameters in VISR. The proportional gain kp,
integral gain ki, and derivative gain kd are adjusted to 30.84, 20.33, and 11.31, respectively.
By comparing the simulation of conventional and fuzzy PID shown in Figure 9, we can
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measure that the overshoot of the traditional PID control system is 11.79%. In contrast,
the newly designed fuzzy PID control system is only 5.8%. Compared with the traditional
PID system, the settling time and the precision of the fuzzy PID system have been improved.
The signal in fuzzy PID reaches balance status within the range of 98% to 102% faster (from
1 s to 2.760 s) than conventional PID (from 1 s to 3.757 s). The sample period is 0.01s.

The experiment of VISR under PID and fuzzy PID algorithm is shown in Figure 10.
The master of VISR was pulled or pushed randomly, and the slave manipulator responded
accordingly. The red straight line represents the signal received from the master, which
is the trajectory in ideal conditions. The blue dot line and green dash-dot line represent
the conventional and fuzzy PID controller performance, respectively. It can be seen that
the fuzzy PID algorithm has a faster response speed and better following features than the
traditional PID and suppresses backlash in displacement effectively.

Figure 9. Simulation of response curves of step signal under three controllers.
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Figure 10. Displacement performance under PID and fuzzy PID. The master of VISR was moved
randomly, and the slave manipulator response accordingly.
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4. ANN-based Force Estimation

A learning-based method is also developed for estimating distal tool-vessel interaction
forces during catheterization. For this, we developed a neural network approach. In theory,
an artificial neural network (ANN) is a generalized collection of connected units or nodes
called artificial neurons, which loosely model the neurons in a biological brain to obtain
knowledge. Such network has the ability to learn effectively from data and compute
nonlinear problems, while traditional machine learning methods often have difficulties
modeling the complexities of nonlinear behavior. An ANN model can be implemented to
encode complex mathematical modeling, parameter identification, and provide solutions
to curve fitting problems [32]. The distal contact force of manipulating the guidewire
is proposed to be estimated by modeling proximal forces measured with a commercial
S-shape force sensor. The sensor is positioned behind the clamping device in the slave
device of the robotic system. The prediction force will be displayed as reference information
to the interventionalist during the surgery.

4.1. Experiment System Overview

To obtain the relationship between distal and proximal forces, studies involving
logging both force data were conducted using the setup shown in Figure 11. The exper-
iment involved catheterizing an SCW-GW-0.035 guidewire (SCW Medicath, Shenzhen,
CN) and navigating it so that it moved along the bending areas of a phantom tube. Thus,
the guidewire produces both tip contact force and friction force as it moves along the
tortuous. We position that this navigation is similar to guidewire navigation in the blood
vessels. The distal composite force and the proximal force in VISR are measured by force
sensors SBT630 (Simbatouch, Guangzhou, CN), and the data is measured and recorded in
real-time with the Nvidia® Jetson AGX Orin. The acquisition system used for recording
force and displacement data was developed and customized in Python, and all signals were
logged at a sampling rate of around 60 Hz. The robotic setup included spring and smooth
slide that allowed the force to change over a period rather than instantaneously so that they
could be recorded precisely in an enormous amount. As mentioned in Section 1, the force
measurements in VISR are divided into sensor-based and model-based approaches. This
method is more suitable for clinical surgical robots than the model-based one. When the
mechanism is efficient and accurate, it has a faster response, higher linearity, and is easier
to implement.

Distal

Figure 11. Experimental setup of force measurement. A tube is used to contain the guidewire, and the
force applied on it is equal to the force on the entire tube, regardless of the bending state of guidewire.

4.2. Designing and Training the ANN

Before the ANN training, five static and five random trials were conducted, while the
proximal force, distal force, and guidewire displacement data were logged in real-time,
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simultaneously. In the static trials, the Nvidia® Orin controls the guidewire and delivers
slowly at a constant speed of 0.1 mm/s. On the contrary, in random experiments, we
manipulate the master controller with random displacements, and the slave terminal per-
forms corresponding movements. The guidewire is manipulated like in the actual surgery
environment. The force values in static experiments are training datasets (9791 samples),
and the values in random experiments are testing datasets (3795 samples). The datasets
are used to fit a feed-forward neural network (FFNN) model, i.e., the model was trained
to fit the data. As depicted in Figure 12, the developed ANN is a multilayer perceptron
(MLP) with an input, an output, and five hidden layers, which have 15, 17, 13, 17, and
15 neurons, respectively.

The relationship between the proximal force obtained with VISR and the distal force
from the trained model, as shown in Figure 13. It can be understood that the data hosts
features of hysteresis. For instance, when the displacement is taken into consideration,
a distinguished pattern can be noted in the data for the cases of force loading and unloading.
However, there exists a nonlinear relationship between the proximal and distal force. Thus,
a linear fitting method may lead to significant error and this is how we motivated to
implement an ANN model to realize the data fitting modeling.
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Figure 12. Architecture of the feed-forward neural network used to predict guidewire force. The ANN
has an input, an output, and five hidden layers.

Unloading

Loadin
g

Figure 13. Hysteresis curve of the force applied to guidewire. The proximal force is measured by
proximal force sensor inside VISR, and the distal force is captured by distal force sensor behind
the tube.
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4.3. Force Estimation Evaluation

Several test experiments were conducted to evaluate the performance of the proposed
ANN-based algorithm in Nvidia® Orin. Similar to random experiments for testing datasets,
we manipulate the master controller like in the actual surgery environment, and the value
of the proximal force sensor (4110 samples) is imported into the ANN, so the value of
distal force is estimated in real-time. When training the ANN, the loading and unloading
are separated, so in the test experiment and actual surgery, the prediction of loading
or unloading (viz. push or pull the guidewire) procedures are also separated, and the
displacement can be obtained through motor driver. Figure 14 presents one test experiment
with real-time force estimation. The difference between real distal force and estimated
distal force is presented in the blue curve. The actual and estimated distal force values have
a very close trend. However, there are also time delays in the increase and decrease in the
force, especially when the guidewire is subjected to a significant force. The main reasons
are that the guidewire is bent and soft in the vessels, so it takes time to transmit the force.
Moreover, this edge computing algorithm in Nvidia® Orin takes longer to process than in
a workstation.

0 5 0 0 1 0 0 0 1 5 0 0
� � � �

0 . 0

0 . 1
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0 . 4

Fo
rce

 (N
)
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 R e a l  d i s t a l  f o r c e
 E s t i m a t e d  d i s t a l  f o r c e
 E r r o r

Figure 14. Test experiment with real-time force estimation. The black curve is measured by distal
force sensor before the tube, and the red curve is the prediction result of the ANN. The trained neural
network provides reasonable force estimates within about 50 mN precision.

Figure 15 shows the estimation error of five test experiments with random motion.
On each box, the central mark indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles of the errors, respectively. The whiskers extend
to the 5th and 95th percentiles of the errors. Most estimation errors are under 50 mN, which
is within the acceptable range. In traditional surgery without robots, the interventionalist
manipulates the guidewire directly by hand, the tactile sense originates from the distal force
of guidewire. Hence these errors have no severe effect on PCIs. The results demonstrate
the feasibility of the VISR, and the proposed robot can increase the precision and accuracy
of guidewire manipulation. The estimated force is displayed on a monitor and sent back
to master console and change the resistance force generated from the magnetic brake
by controlling the current. Thus, the surgeon can intuitively feel the resistance of the
guidewire. Meanwhile, a force-based security system will be activated when the estimated
force exceeds a critical value.
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Figure 15. Box-plot of errors at five test experiments with real-time force estimation, where the error
is defined as the difference between the predicted and measured guidewire distal force.

5. Conclusions and Future Works

This paper presents a vascular interventional surgery robot with isomorphic master–
slave devices and learning-based control models for real-time tool navigation and force
prediction. The master device in the VISR is capable of scheduling different tool navigation
actions, such as pull or push, while the slave device can respond accordingly. Experimental
results show that the VISR supports logging a surgeon’s catheterization behaviors about
tool handling force, rotation, and translation. These intravascular methods aid guidewire
navigation with resistance-based force feedback when cannulating blood vessels. The con-
trol navigation in VISR used conventional and fuzzy PID control techniques. At the same
time, recent applications of neural-based and reinforcement learning are underway [31].
In future research, we will use some learning-based control algorithms to enhance the
intelligence of the robot and increase levels of autonomy to task autonomy (level 2) or
conditional autonomy (level 3) [33]. Furthermore, surgical planning remains an important
aspect of robot-assisted interventions [34–36]. For instance, robot-assisted intravascular
interventions are recommended for selected patients with complex cardiovascular cases
because the robot would prevent surgeons’ overexposure to radiation, while patients
would also be prevented from disease–related comorbidities. In our future studies, we
will integrate a module of imaging data acquisition with deep and reinforcement learning
approaches for robot-assisted catheterization in specific case-based vascular catheterization
using VISR.
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Abbreviations
The following abbreviations are used in this manuscript:

VISR Vascular Interventional Surgery Robot
PID Proportional Integral Derivative
PCI Percutaneous Coronary Intervention
FBG Fiber Bragg Grating
ANN Artificial Neural Network
MLP Multilayer Perceptron
FFNN Feed Forward Neural Network
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